Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

| Law of Syllogism |
| :--- | :--- | :--- |
| Definition and illustration (if applicable): |
| Suppose the statements p implies q and q implies r are both true. Then we may write: |
| (p implies q) and (q implies r). |
| The first implication means that when p is true, q must also be true and we cannot have p true and q false. |
| The second implication means that when q is true r must also be true, and we cannot have q true and r false. |
| These results show that when p is true r must also be true, and we cannot have p true and r false. In other |
| words: p implies r. |
| We may summarize this result as follows: |
| From (p implies q) and (q implies r) we conclude (p implies r). |
| Associated terms: Law of Detachment, Law of Contrapositive |

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

